Parameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm

نویسندگان

چکیده مقاله:

An important problem in nonlinear science is the unknown parameters estimation in Loranz chaotic system. Clearly, the parameter estimation for chaotic systems is a multidimensional continuous optimization problem, where the optimization goal is to minimize mean squared errors (MSEs) between real and estimated responses for a number of given samples. The Bees algorithm (BA) is a new member of meta-heuristics. BA tries to model natural behavior of honey bees in food foraging. This paper focuses on using the BA to solve this problem. Simulation results demonstrate the merit, effectiveness and robustness of BA.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter estimation using chaotic time series

A B S T R A C T We show how the response of a chaotic model to temporally varying external forcing can be efficiently tuned via parameter estimation using time series data, extending previous work in which an unforced climatologically steady state was used as the tuning target. Although directly fitting a long trajectory of a chaotic deterministic model to a time series of data is generally not...

متن کامل

A Chaotic Levy Flight Bat Algorithm for Parameter Estimation in Nonlinear Dynamic Biological Systems

We propose a synergistic approach to meta-heuristic search optimization algorithm. The fine balance between intensification (exploitation) and diversification (exploration) is very important to the overall efficiency and performance of a meta-heuristic search algorithm. Too little exploration and too much exploitation could cause the system to be trapped in local optima, which makes it very dif...

متن کامل

Parameter Estimation of a Class One-Dimensional Discrete Chaotic System

It is of vital importance to exactly estimate the unknown parameters of chaotic systems in chaos control and synchronization. In this paper, we present a method for estimating one-dimensional discrete chaotic system based on mean value method MVM . It is proposed by exploiting the ergodic and synchronization features of chaos. It can effectively estimate the parameter value, and it is more exac...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel charac...

متن کامل

Parameter and state estimation of experimental chaotic systems using synchronization.

We examine the use of synchronization as a mechanism for extracting parameter and state information from experimental systems. We focus on important aspects of this problem that have received little attention previously and we explore them using experiments and simulations with the chaotic Colpitts oscillator as an example system. We explore the impact of model imperfection on the ability to ex...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 26  شماره 3

صفحات  257- 262

تاریخ انتشار 2013-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023